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Abstract

Marine safety and security, including military situational awareness, create a need 
for short-term ocean forecasts of the ocean state. At present, such forecasts are done 
using numerical models on high performance computers. These models, although 
robust, often provide information at relatively coarse resolution for local/regional 
application, are difficult to deploy rapidly, and require connection between the data 
centre and user in the field. However, the rapid development of data-driven methods 
has opened a possibility for statistical emulators that can be trained with numerical 
model data to produce similar information but can be evaluated on a laptop computer 
in the field in a matter of seconds. To this end, we demonstrate creating an emulator to 
predict thermocline depth, an important parameter for sonar weather, up to 10 days 
in advance in the Archipelago Sea, Baltic Sea. We find that for this purpose, multiple 
linear regression produces the best results as more complex architectures suffered from 
limited training data or limited memory in the training phase.

Provision This publication is part of the implementation of research funding of the Scientific Advisory 
Board for Defence (MATINE). (www.defmin.fi/matine) The content is the responsibility of the 
producers of the information and does not necessarily represent the view of the Defence 
Ministry.

Keywords national defence, research, comprehensive defence approach, modelling

ISBN PDF 978-951-663-186-1 ISSN PDF 2984-102X 

URN address https://urn.fi/URN:ISBN:978-951-663-186-1



Kuvailulehti 
8.4.2024

Nopeita ja ketteriä meriennusteita surrogaattimalleilla

Maanpuolustuksen tieteellisen neuvottelukunnan julkaisuja 2024:5
Julkaisija Puolustusministeriö

Tekijä/t Antti Westerlund, Benoit Espinola, Aleksi Nummelin
Yhteisötekijä Ilmatieteen laitos
Kieli Englanti Sivumäärä 22

Tiivistelmä

Meriturvallisuus ja merenkulun turvaaminen, mukaan lukien sotilaallinen 
tilannetietoisuus, luovat tarpeen lyhyen aikavälin meren tilan ennusteille. Tällä hetkellä 
tällaiset ennusteet tehdään käyttämällä numeerisia malleja suuritehotietokoneilla. 
Vaikka nämä mallit ovat sinänsä luotettavia, ne tuottavat usein tietoa suhteellisen 
karkealla resoluutiolla paikallista/alueellista soveltamista varten, niitä on vaikea 
ottaa nopeasti käyttöön ja ne edellyttävät yhteyttä tietokeskuksen ja kentällä olevan 
käyttäjän välillä. Datapohjaisten menetelmien nopea kehitys on kuitenkin avannut 
mahdollisuuden tilastollisiin emulaattoreihin, jotka voidaan kouluttaa numeeristen 
mallien tietojen avulla tuottamaan samanlaista tietoa kuin itse mallit, mutta joita 
voidaan ajaa kentällä kannettavalla tietokoneella muutamassa sekunnissa. Tässä työssä 
kehitettiin merimalliemulaattori, jolla voidaan ennustaa termokliinin syvyyttä, joka 
on tärkeä parametri kaikuluotaussäälle, jopa 10 päivää etukäteen Saaristomerellä. 
Moninkertainen lineaarinen regressio tuotti parhaat tulokset, sillä monimutkaisemmat 
menetelmät kärsivät rajallisesta koulutusdatasta tai rajallisesta muistista 
koulutusvaiheessa.
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Referat

Maritim säkerhet och trygghet, inklusive militär situationsmedvetenhet, skapar 
ett behov av kortsiktiga prognoser för havets tillstånd. För närvarande görs 
sådana prognoser med hjälp av numeriska modeller på högpresterande datorer. 
Dessa modeller är visserligen robusta, men ger ofta information med relativt grov 
upplösning för lokala/regionala tillämpningar, är svåra att använda snabbt och 
begär netvärkanslutning mellan datacentret och användare på fältet. Den snabba 
utvecklingen av datadrivna metoder har dock öppnat en möjlighet för statistiska 
emulatorer som kan tränas med numeriska modelldata för att ge liknande information, 
och som kan utvärderas på en bärbar dator på fältet inom några sekunder. För 
detta ändamål demonstrerar vi hur man skapar en emulator för att förutsäga 
termoklindjuphet, en viktig parameter för sonarväder, upp till 10 dagar i förväg i 
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1 Introduction 
Operational and security applications of marine environmental data are nu-
merous (e.g., Burnett et al., 2014). General applications can include support 
for naval operational activities, maritime accident management, and oil spill 
management. Also, awareness of the marine physical conditions is important 
for managing coastal hazards, such as seawater flooding and nuclear power 
plant safety.  

However, especially on short timescales, the physical conditions in the sea 
are not well described by observations which lack resolution both in space and 
time. Numerical models, based on equations describing the physical system, 
can provide a more comprehensive overview of prevailing conditions, with a 
higher spatial and temporal resolution and range. These models are well es-
tablished and have been used for decades. However, their use requires expert 
input and careful tuning of parametrizations to run and produce results. These 
simulations are computationally expensive, and the results come after long 
runtimes (order of hours). The Archipelago Sea in the Baltic Sea is an exam-
ple of an especially challenging region for these numerical models because of 
its fragmented coast, where high spatial resolution is required. Overall, all 
these limitations can make numerical models challenging to use in a rapid op-
erational response context. 

In the project “Nopeita ja ketteriä meriennusteita surrogaattimalleilla” (“Rapid 
and agile ocean forecasting with surrogate modelling”) a completely new type 
of pilot marine forecasting system was developed based on a surrogate model 
predicting the thermocline depth for the sea areas surrounding the island of 
Utö in the Archipelago Sea. A surrogate model is a data-driven approach, 
learning relationships between the numerical model’s output data and its forc-
ing. Based on the relationships between the forcing and numerical model’s 
output, the surrogate model then predicts an outcome in a way similar to the 
traditional numerical model. The training of the surrogate model requires the 
use of high-performance computers; however, once trained, these surrogate 
models do not require intensive computational resources and can yield results 
in a very short time (order of seconds). 



PUBLICATIONS OF THE SCIENTIFIC ADVISORY BOARD FOR DEFENCE 2024:5 

8 

The island of Utö is located on the southern edge of the Archipelago Sea. The 
Archipelago Sea is a sub-region of the Baltic Sea located east from the Åland 
islands and surrounded by the Baltic proper (in the Southern boundary), the 
Åland Sea (in the Eastern boundary), the Bothnian Sea (in the Northern 
boundary), and the Finnish mainland (in the Western boundary). The Archipel-
ago Sea is characterized by a highly fragmented coastline with thousands of 
islands, shallow underwater topography, with several deeper, mostly north-
south oriented, canyons/trenches. The complex topography together with 
small characteristic scales of dynamics, makes the Archipelago Sea a chal-
lenging physical system to simulate. 

The Archipelago Sea temperature profile is affected by a seasonal thermo-
cline. After the winter period, when the water column is generally mixed (and 
of constant temperature) all the way to the bottom (or to the halocline where 
that exists), the incoming solar radiation increases, heating up the surface 
layer of the sea. The warming surface layer is then separated from the colder 
waters below by thermocline, a region of an enhanced vertical temperature 
gradient. Physical processes such as wind, waves, and surface cooling, work 
against the solar radiation to weaken the stratification and deepen the mixed 
layer, and eventually in the fall they break the thermal stratification, and the 
thermocline is mixed away. Unlike the deeper parts of the Baltic Sea, the Ar-
chipelago Sea is shallow enough to be mostly above the region of more per-
sistent saline stratification, halocline, and, consequently, thermal stratification 
dominates the density, and speed of sound, in the water column. Therefore, 
depth of the thermocline is an essential variable for sonar weather and sonar 
calibration. 
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2 Research objectives 
In the project, machine learning methods were used to create a surrogate 
model to predict the depth of the thermocline in the next 7 days. We aimed to 
create a model that: 

• could be trained in a reasonable time on a HPC cluster, 
• could be run on a laptop, 
• produced results in 10 minutes or less. 

Our surrogate model was a pilot model for the Underwater Warfare Data Cen-
ter of the Finnish Naval Academy. Our objectives were to produce a product 
that can be useful for the customer with a good enough quality to support cus-
tomer operations. Our priority was to predict the thermocline depth in the re-
gion surrounding Utö during the open water season with 1 to 4 days lead time. 
Through this work, we also gathered information on the feasibility of this ap-
proach, as well as the most suitable methods for this task. 
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3 Materials and methods 

3.1 Numerical model and training dataset 
The machine learning model was trained with data from a traditional hydrody-
namic model. The training set consists of results from the NEMO V4.0 hydro-
dynamic model for the Archipelago Sea and the Åland Sea (Westerlund et al. 
2022, Miettunen et al. 2024) for the years 2013 to 2017 with a 0.25 NM hori-
zontal resolution (~500 m), up to 1 m vertical resolution, 200 vertical levels, z* 
vertical coordinates. The bathymetry used comes from VELMU and BSBD 
(same configuration as in Westerlund et al. 2022). We used Copernicus Cli-
mate Change Service’s ERA5 atmospheric reanalysis for the meteorological 
forcing (Hersbach et al., 2023) and a regional reanalysis configuration pro-
vided by the Copernicus Marine Environment Monitoring Service (CMEMS) for 
the lateral boundary and initial conditions (CMEMS, 2022). 

3.2 Thermocline calculation from NEMO 
To calculate the depth of the thermocline, we used the temperature (𝑻𝑻  ∈  ℝ4) 
output from NEMO, with coordinates (t, z, y, x) where t is the time, z is the 
depth, y is the longitude, and x is the latitude. 

We then define the thermocline depth as the depth of the maximum gradient 
of the temperature profile along the z-axis, complemented with the stratifica-
tion index and thermocline strength as suggested by Fiedler (2010). Addition-
ally, we constrained the thermocline to 𝑧𝑧 ∈ �2, 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑦𝑦�, where 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑦𝑦 is the 
depth of the bathymetry at the coordinate (𝑥𝑥,𝑦𝑦). When the thermocline depth 
is the same as the depth of the local bathymetry, the thermocline depth is set 
to zero. 
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3.3 Machine learning model 
For our surrogate model architecture, we used multiple linear regression 
(MLR) which is a generalization of linear regression for higher dimensions 
(Marill, 2014). MLR consists of a linear combination of the independent varia-
bles (also known as features) with coefficients (also known as weights) vector. 
Additionally, a constant term known as the intercept is added to this linear 
combination. When fitting a MLR to data, an error term is added. This error 
term is a distance metric (also known as cost) between the dependent varia-
ble (also known as the response variable), in our case the depth of the ther-
mocline, and the prediction given by the error-free MLR. This error is aimed to 
be minimized when fitting the training data. 

𝒚𝒚  =  𝛽𝛽0  +  𝜷𝜷𝜷𝜷  +  𝜺𝜺 

Where 𝑦𝑦 is the dependent variable (thermocline depth),  𝛽𝛽0 is the intercept, 
𝜷𝜷𝜷𝜷 is the linear combination between the coefficients vector (𝜷𝜷) and the inde-
pendent variables (𝑿𝑿), and 𝜺𝜺 is the model error term.  

Changes in thermocline depth are non-linear and depend on non-linear pro-
cesses such as wind shear and stress (e.g., Krauss, 1981). Furthermore, 
when the thermocline reaches the bottom, the thermocline is no longer pre-
sent and its depth is set to zero, which is also a non-linear change. The frag-
mented islands and coastline in our domain further introduce discontinuity, 
this time spatially induced. 

Discontinuities represent challenges for linear machine learning algorithms 
such as the MLR. We partially address these challenges by using a custom 
loss function and through feature engineering.  
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To tackle the discontinuity introduced by the thermocline reaching the bottom, 
we developed a custom error term where the distance is measured as follows: 

𝑧𝑧𝑎𝑎 = min(𝑧𝑧𝑇𝑇 ,  𝑧𝑧𝑃𝑃) 𝑧𝑧𝑏𝑏 = max(𝑧𝑧𝑇𝑇 ,  𝑧𝑧𝑃𝑃) 𝑧𝑧𝑎𝑎  ≤  𝑧𝑧𝑏𝑏  ∴  𝑧𝑧𝑏𝑏  −  𝑧𝑧𝑎𝑎  ≥  0 

𝜀𝜀1 = 𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎  𝜀𝜀2 =  𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑦𝑦  −  (𝑧𝑧𝑏𝑏 − 𝑧𝑧𝑎𝑎) 

𝜀𝜀 = min(𝜀𝜀1 ,  𝜀𝜀2) 

Where 𝑧𝑧𝑇𝑇 is the depth of the thermocline in the training set (true value), 𝑧𝑧𝑃𝑃 is 
the depth of the thermocline predicted by the MLR and 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑦𝑦 is the depth of 
the bathymetry. 𝜀𝜀1 represents the Euclidian distance between the prediction 
and the true value of the thermocline depth and 𝜀𝜀2 is a distance metric be-
tween the deepest value and the bathymetry combined with the depth of the 
shallow most point. The approach used for 𝜀𝜀2 considers that points near the 
bathymetry are close to points at the surface. The error 𝜀𝜀 becomes the mini-
mum error between these two components. 

For the loss function, we used the mean absolute error: 

 𝑀𝑀𝑀𝑀𝑀𝑀  =     1
𝑁𝑁
∑ |𝜀𝜀|𝑁𝑁
𝑖𝑖=0  

To train the model, we aim at finding the weight vector and intercept that mini-
mizes the MAE. 

3.4 Training data and feature engineering 
The training data contains a total of 127 variables including ERA5 forcing key 
variables, the thermocline depth at the previous time step (as initial condi-
tions) and engineered features. The following variables come from the ERA 5 
forcing: 10 m U and V wind components (two variables), 2 m dewpoint tem-
perature, 2 m air temperature, mean sea level pressure, mean snowfall rate, 
mean surface downward short and long-wave radiation fluxes (two variables), 
mean total precipitation rate, surface air pressure, and total precipitation.  

We created the following variables to attempt to linearize the relationship be-
tween the raw data and the depth of the thermocline: squared wind speed at 
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10 m, fourth root of the downward short and long-wave radiation fluxes (two 
variables), and temperature at 2 m over the squared wind speed at 10 m. We 
introduced a rolling mean, median, standard deviation, sum, minimum and 
maximum along the time-axis for the past 6h for the following variables: 10 m 
U and V wind components (two variables), 2 m dewpoint temperature, 2 m air 
temperature, mean sea level pressure, mean snowfall rate, mean surface 
downward short and long-wave radiation fluxes (two variables), mean total 
precipitation rate, and surface air pressure, squared wind speed at 10 m, 
fourth root of the downward short and long-wave radiation fluxes (two varia-
bles), and temperature at 2 m over the squared wind speed at 10 m. Addition-
ally, we introduced rolling means along the time-axis for the 2 m air tempera-
ture including the past 24h and 7 days (a total of two rolling means). 

Furthermore, we introduced 3 dummy variables for winter (air temperature ≤ 0 
⁰C), transition (0 ⁰C < air temperature < 10 ⁰C) and summer seasons (air tem-
perature ≥ 10 ⁰C). Another 4 season variables were introduced where winter is 
represented by December, January and February; spring is March, April and 
May; summer is June, July and August; and autumn is September, October 
and November. 

For time, we introduced 4 variables: sine and cosine of the time of the day and 
sine and cosine of the day of the year: 

𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = cos �𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑
24 ℎ

� , 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = sin �𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑
24 ℎ

� 

𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = cos � 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� , 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = sin � 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� 

Finally, we included 6 h, 1 day, 1 day 18 h and 2.5 days lags for the following 
variables: 2 m air temperature, the downward short and long-wave radiation 
fluxes, and the thermocline (from the initial conditions). 

The original ERA5 data has a time resolution of 1h. The data has been regrid-
ded to match output grid of the NEMO data (with 6h time resolution).  
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4 Results 

4.1 Pilot tool 
We have developed a pilot tool using Python 3.10.13 that uses the command 
line as an interface together with a configuration text file. The tool generates a 
NetCDF file containing the predictions obtained by using our model. 

Kuvio 1. Screenshot of the pilot tool's command line interface 

 
. 

The tool, presented in Figure 1, enabled us to understand the requirements of 
implementing this new kind of pilot modelling system, including the resource 
requirements of the tool. The runtime for training our model is less than an 
hour on a high-performance computing centre and the results come in less 
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than 5 minutes using a laptop. Our model’s computational requirements are a 
fraction of the needs required by traditional hydrodynamic models. 

4.2 Thermocline depth predictions 
To illustrate the prediction capacity of our model, we plotted maps and time 
series of our thermocline depth predictions alongside with errors and the ther-
mocline depth coming from the numerical model (see Figure 2). The thermo-
cline depth calculated with NEMO (a) shows variability in the field for 03 Au-
gust 2017. Our model prediction for the same date (b), captures the general 
variability. 

However, the difference between the two plots (c) suggests a positive bias in 
the South-West area of our domain and a negative bias in the North-East area 
of our domain. Extreme values are likely due to the discontinuity of the ther-
mocline depth between the surface and the bottom. The model’s mean abso-
lute error (MAE) with respect to lead time (e) suggests the model has degrad-
ing skill over lead time with a plateau after 2 to 3 days. The difference be-
tween the MAE and the custom MAE  

occurs because the custom MAE considers points near the surface close to 
points near the bottom, tackling the discontinuity of the thermocline depth in-
troduced by the thermocline reaching the bottom. 

The time series (d) shows the temperature depth profile calculated from 
NEMO with the calculated thermocline depth (white points) and our predic-
tions (black points). Here we can see that locally, our model captures large 
scale variability but not so well the short-term variability. 
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Kuvio 2. Thermocline depth calculated by the hydrodynamic model NEMO 
(a), thermocline depth predicted by the multiple linear regression 
(MLR) (b), and difference between the MLR and NEMO 
thermocline depth (c). In panel (c), warm colors suggest the MLR 
overestimated the thermocline depth while cold colors suggest an 
underestimation. The black dot indicated in panels (a-c) at 59.65 
°N, 22.1 °E represents the location of an example station used in 
panel (d). Panel (d): temperature profile time series (background) 
with the thermocline depth calculated from NEMO (white) and the 
thermocline depth predicted by the multiple linear regression 
(black) at 59.65 °N, 22.1 °E. Panel (e): Mean Absolute Error 
(blue) and mean absolute custom error (black) for the entire 
domain with respect to lead prediction time. 
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5 Discussion 
Our model manages to capture large scale features. It has limitations for short 
variability both in the temporal and spatial domain. 

5.1 Time and resource needs 
In this work we created an emulator for a host numerical model with a horizon-
tal domain of size 30 km by 90 km, a horizontal resolution of approximately 
500 m, and with varying bottom depth such that the total number of grid cells 
in the 2D domain is 7710 cells. With the given domain, and the multiple linear 
regression architecture, the emulator training took less than an hour on the 
CSC hosted Puhti HPC (with 1 core and 185 GiB memory). We note that 
changing the architecture can significantly impact the training time, but on the 
other hand, because training only needs to be done once, even a much longer 
training time, would still be feasible. A weeklong prediction with the trained 
emulator then takes about 5 minutes on a regular laptop. The evaluation time 
has only minor dependence on the emulator architecture. Given these results, 
we conclude that creating emulators for the marine realm is computationally 
feasible in with the current HPC resources. 

5.2 Comparison and evaluation of approaches 
On the top of MLR, we have experimented with other ML approaches. We at-
tempted to train the model using a Random Forest (RF) method, widely used 
because of its interpretability and performance. However, not only training a 
RF model requires long runs using an HPC, but the method also itself requires 
the entire dataset to be loaded in the memory. We have reached the limits of 
the available resources and had to downscale our dataset. This resulted in 
poor model performance compared to MLR. To obtain better results we would 
need a larger dataset, which in turn requires more HPC memory. This ap-
proach was therefore considered not to be cost effective and was excluded in 
this study. 
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We also attempted to train a Conv 3D U-Net, which is a deep neural network 
combining 3D convolutional layers with a U-Net architecture, which potentially 
performs well finding geospatial patterns in the data. However, this architec-
ture is difficult to parametrize and the data we have available was insufficient 
for us to find a good fit. Additionally, the explainability of deep neural networks 
is challenging, making the MLR approach more appealing. 

In future studies, also the following approaches could be tested: Long-Short 
Term Memory neural networks (LSTM), which performs well for time series 
data; LSTM U-Net, for the same reasons with an added spatial component; 
multi-step methods where we first classify our domain (e.g., using K-Nearest 
Neighbours or Self Organized Maps) to then fit a model for each class; and an 
ensemble approach, using a collection of ML models to make predictions and 
merge these predictions for our final output. 

Conclusions for the next versions. 

• More training material would be beneficial. 
• Tuning of the machine learning architecture takes significant 

amount of time. 
• Memory is an essential resource for training the models. 
• The initial state of the system is important. 

5.3 Suitability for use 
One of the objectives of the project was to evaluate the pilot system together 
with the customer to on one hand gather feedback about the usefulness of the 
product, and on the other hand prioritize development tasks.  

The following areas for improvement were identified through the discussion: 

• Domain spatial extent was refined based on customer expecta-
tions. 

• For forecast length, the focus was decided on a time horizon of 
about one week so it would optimally support planning operations. 

• The discussion made obvious the need for revision of the bound-
ary condition treatment, which had a positive impact on the quality 
of the results. 
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• The discussions improve understanding on the expected accu-
racy of the results. 

This discussion will hopefully continue as part of further co-operation between 
the customer and the project team, in future projects. 
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6 Conclusions 
The project developed a pilot data-driven model system with an ocean model 
emulator at its core. Here, the emulator targeted the seasonal thermocline 
depth which was deemed important for the sonar weather in the Archipelago 
Sea. The emulator architecture was based on multiple linear regression, and it 
was trained against data from a regional high resolution ocean model. The 
emulator training and execution proved computationally efficient and orders of 
magnitude faster than required by the host models to produce corresponding 
output.  

The results of the project have proven encouraging and will be taken up in 
other projects. However, we have also identified several action points for fur-
ther development. For more elaborated approaches (such as deep neural net-
works), more training data is needed. Additionally, computational resources 
for training can be a limiting factor, especially the available memory. Choosing 
methods that accept larger than memory strategies can tackle this limitation. 

In general, we also see further potential for data driven applications in under-
standing the physical state of the sea. For example, the current approach 
could be extended towards predicting tracers like temperature and salinity, as 
well as dynamical parameters such as sea surface height. Ocean model reso-
lution could also be enhanced by building an emulator for the sub-gridscale 
dynamics using data from even higher resolution models or from, e.g., satellite 
observations. Such an approach would be useful especially in the near shore 
regions (on an order 10-100 m from the coast) which would be computation-
ally very demanding to resolve. Yet another application is drift calculations 
e.g., for oil spills and hazardous substances.  



PUBLICATIONS OF THE SCIENTIFIC ADVISORY BOARD FOR DEFENCE 2024:5 

21 

7 Scientific publishing and other 
reports produced by the research 
project 

The results of the project have been presented in several scientific meetings 
and conferences. 

The results were presented in the 54th International Liège Colloquium on 
Ocean Dynamics organized at the University of Liege 8 to 12 May 2023.  The 
topic of the conference was machine learning and data analysis in oceanogra-
phy. This colloquium was an excellent opportunity to discuss the develop-
ments done in the project with many of the leading experts in the field. 

The results were also reported at the BOOS Science Day held at the Finnish 
Meteorological Institute on 10 May 2023. BOOS (Baltic Operational Oceano-
graphic System) is the alliance of institutes around the Baltic Sea involved in 
operational oceanographic activities. 

Additionally, the project was presented in the annual MATINE seminars in 
2022 and 2023. 

A scientific manuscript is in preparation and is aimed to be submitted to a 
peer-reviewed journal in the second quarter of 2024. 
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